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Contrast energy thresholds were measured for discriminating the direction of a drifting sinusoidal
grating multiplied by an independently drifting space-time Gaussian (a generalized Gabor). We argue
that the stimulus with the lowest contrast energy threshold identifies the receptive field of the most
efficient linear motion filter. This optimal motion stimulus is found to be at 3 c[deg and 5 Hz, with
a width and height of 0.44 deg and a duration of 0.133 sec, corresponding to spatial and temporal
bandwidths of 1.1 and 2.5 octaves, respectively. The spectral receptive field is aligned more nearly to
the Cartesian axes than to the velocity contour.
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THEORY

Early thinking on the nature of motion detecting mech-

anisms in human vision was dominated by the notion of

a matching process operating over space and time.

Activity at one point in space and time was matched to

activity at another point in space and time, and motion

between the two points was thereby inferred. The match-

ing was typically accomplished by conveying the activity

from the first point to the second, with a delay corre-

sponding to the putative speed of motion, and multiply-

ing the two activities (Barlow & Levick, 1965; Reichardt,
1961, 1986). Advances in visual physiology (Hamilton,

Albrecht & Geisler, 1989), psychophysics (Adelson &

Movshon, 1982), and mathematical analysis of the

motion problem (Crick, Marr & Poggio, 1981; Watson

& Ahumada, 1983; Watson, Ahumada & Farrell, 1986)

have led to a new model, in which motion signals are

first extracted by means of linear filters (Watson &

Ahumada, 1983). This motion filter model has been used

to compute local image velocity (Watson & Ahumada,

1985), "opponent" motion signals (van Santen &

Sperling, 1985), "motion energy" (Adelson & Bergen,

1985) and "motion magnitude" (Watson, 1990), and to
detect gradients in the motion field (Watson & Eckert,

1994).

The characteristic feature of the motion filter, when

viewed in the three-dimensional spatiotemporal fre-

quency domain, is that its passband or "spectral recep-

tive field" lies predominantly in one half of the positive

temporal frequency half-volume (Watson & Ahumada,

1983). Viewed in one temporal and one spatial dimen-

sion (with the spatial dimension aligned with the pre-
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ferred direction of motion), the motion filter passband

lies predominantly in two opposing quadrants of the

frequency domain (Fig. 1). This spectrum corresponds to

a receptive field (or impulse response) that appears

oriented in space-time. Beyond this fundamental struc-

tural feature, there are many detailed questions that may
be asked about the motion filters in human vision. What

are their spatial and temporal bandwidths, or corre-

sponding height, width, and duration of the receptive
field? What is the detailed shape and orientation of the

spectrum or receptive field?

Using both spatial summation (Anderson & Burr,

1985, 1987, 1991) and masking experiments (Anderson

& Burr, 1989; Anderson, Burr & Morrone, 1991; Burr,

Ross & Morrone, 1986), Anderson, Burr and Morrone

have provided considerable information on the shape of

the motion filters. By examining variations in sensitivity

as a function of length and width of a moving test

grating, and as functions of spatial frequency and orien-

tation of drifting and randomly phase-changing masks,

they have derived estimates of some of the dimensions

of the motion receptive field. Their masking results

suggested spectral receptive fields that are quite broad in
temporal frequency and moderately broad in spatial

frequency. Summation data indicate spatial receptive

fields that are roughly as tall as they are wide (an aspect

ratio of 1), and a width (defined as 2 SDs of a Gaussian

window) that increases from about 0.1 cycle at 0.1 c/deg

to 0.5 cycle at 10 c/deg. These widths result in rather
broad bandwidths. In octave terms, their narrowest

bandwidth, at 10 c/deg, is 2.6 octaves. The octave band-
width for the two lower spatial frequencies cannot be

computed because the lower half-amplitude point is at a

negative frequency. These bandwidths are substantially

larger than the median for V1 neurons of 1.4 octaves,

though physiological bandwidths are highly variable

(De Valois, Albrecht & Thorell, 1982a). The masking

data suggest widths about twice as great, and thus
325
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FIGURE l. Frequency spectrum of generic motion filter.

bandwidths that are considerably narrower, but this

comparison is complicated by the fact that rather differ-

ent receptive field models were used to analyze sum-

mation and masking data.

The temporal dimension has been examined by means

of masking experiments, which yielded very broad band-

widths (Anderson & Burr, 1985). Masking functions did

not peak at the test frequency and showed only weak

evidence for more than a single temporal mechanism.

These results clarify considerably our picture of the

spectral receptive field. But one objection to many of
these experimental approaches is that they used only a

single spatial frequency at a range of temporal frequen-

cies, or a single temporal frequency at a range of spatial

frequencies, and that they therefore assume a spectral

receptive field that is positive-separable* in spatial and

temporal frequency (an exception is Burr, Ross &

Morrone, 1986). To illustrate this point, Fig. 2 shows

three possible spectral receptive fields, all three of which

have the same spatial and temporal frequency band-

widths. One of the three (a) is separable in spatial and
temporal frequency, and is therefore oriented along the

Cartesian axes. Another (b) is oriented along the line of

constant velocity, and might therefore be described as

"velocity tuned". The third (c), oriented orthogonal to

the velocity contour, has no simple interpretation but is

nonetheless a logical and physical possibility (see Fleet

& Langley, 1994 for a possible interpretation).

To address this and other gaps in our knowledge of

the receptive field of the motion filter, we have adapted

a technique developed earlier tO estimate the shape of the
receptive fields involved in luminance contrast detection

(Watson, Barlow & Robson, 1983). In that study of
"what does the eye see best", it was argued that for a

fixed linear receptive field, the most efficiently detected

*Motion filters are by definition not separable in space and time, or

spatial and temporal frequency (Watson & Ahumada, 1983). They

may, however, be separable when only positive temporal frequen-

cies are considered. We call this "positive-separable".
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FIGURE 2. Three possible passbands with identical spatial and

temporal bandwidths.

stimulus is one that matches the shape of the receptive

field. Efficiency is measured as the inverse of the

threshold contrast energy. Contrast energy is the integral
of the square of the contrast waveform. The experimen-

tal approach, then, is to survey a wide range of plausible
stimuli to discover which is detected with least contrast

energy. The waveform of this optimal stimulus

putatively identifies the shape of the receptive field. In

practice, because all stimuli cannot be investigated,

the search is confined to some plausible parameterized
family of candidates.

We modify this approach in only one respect. Because
we are interested in the shape of the motion receptive

field, the thresholds we measure are for a direction-

discrimination judgement. On each trial, the stimulus

moves either right or left, and the observer must try to
discriminate this direction.

This optimization approach relies on two obser-

vations. The first, which is a mathematical truth, is that

if there is a linear motion filter, its receptive field will

correspond to the optimal stimulus. This result is a direct

inversion of the familiar matched filter theorem, which

states that the ideal detector of a signal known exactly

is a filter whose impulse-response matches the signal
(Duda & Hart, 1973; Green & Swets, 1966; Watson

et al., 1983). The second observation is that, since the

linear filter is ideal, it is a likely candidate for a motion

sensor, particularly at the early stages of vision. This

expectation is bolstered by extensive evidence for cortical

neurons that act to a good first approximation as linear

motion filters. But we must acknowledge at the outset

that in human vision (1) linear motion filters may not

exist, and (2) even if they do exist and are well charac-
terized by our procedure, that other, less efficient non-

linear motion sensors may exist.

To select a plausible search space, we take note of the

filter model cited earlier, which often employs a Gabor

function in the space domain, and the results cited
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FIGURE 3. Examples of generalized Gabor stimuli. The spatial and temporal extents are 1 deg and l sec. Unless noted,

parameters are: f,. = 8 c/deg, ft/f,- = I deg/sec, s,. = 0.25 deg, s, = 0.25 sec, a x = 0. Varying parameters are: (B) s,. = 0.5 deg,

Xt = 0.125 sec; (C) a,.= 1 deg/sec; (D) a,.= --1 deg/sec.

above which indicate a receptive field that is local in

both two-dimensional space and frequency. As discussed

below, this leads to a stimulus family that we call

"generalized Gabors".

STIMULI

The family of stimuli that we employ can be described

either in their space-time or frequency domain aspects.
In space-time, our stimulus consists of a drifting sinu-

soidal grating, with a frequency of f= [J_,fj,,f] (and

thus a velocity off/[f_,._,]) windowed by a Gaussian

aperture with spatial and temporal scales of sx, sy, and
s,. The Gaussian aperture may itself move with a velocity

[ax, aJ. We will call these stimuli "generalized Gabors".
From their context in the theory of modulation, we will

refer to the grating as the carrier and the Gaussian as the

aperture. Figure 3 provides some [x, t] images of possible
generalized Gabor stimuli. In the upper two images (A)

and (B), the grating moves to the right at l deg/sec and

the aperture is stationary. The two panels differ only in

horizontal and vertical scales. In the lower two panels,

the aperture either moves with the same (C) or opposite

velocity (D) as the grating. The latter two examples

address one question of particular interest: does the

aperture move with the carrier in the human motion

receptive field, or is it stationary? As we shall see, this is

equivalent to asking whether the spectral receptive field

is aligned with the Cartesian axes, and thus possibly

positive-separable.
The three-dimensional Fourier transform of the gener-

alized Gabor can be easily derived in the following way.

The transform of the carrier grating is simply a pair of

impulses at +f. The transform of the three-dimensional

(3D) Gaussian aperture is itself a 3D Gaussian. Multipli-

cation of the carrier and aperture corresponds to con-
volution of their Fourier transforms, and convolution of

a Gaussian with an impulse corresponds to placing a

copy of the Gaussian at the location of the impulse. The
result is therefore a pair of 3D Gaussians located at _+f.

Finally, changes in the width, height, duration, and

velocity of the aperture correspond to magnifications

and shears of the 3D Gaussian, which correspond to

complementary magnifications and shears in the fre-

quency domain.
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FIGURE 4. Space-time and frequency domain ellipsoids corresponding to particular aperture scales and motions. The solid

ellipse is the constant-value [exp(--g)] contour of the space-time Gaussian; the dashed ellipse is the contour for the

corresponding frequency Gaussian. (A) sx = 1 deg, s t = 1 sec, a, = 1 deg/sec. (B) s x = I deg, s t = 0.5 sec, a x = 2 deg/sec.

To be specific, consider a "unit" 3D Gaussian in space-

time, with a scale of 1 in each dimension, which we write as

exp(-nx'x) (1)

where x = [x, y, t], and where the prime symbol indicates

matrix transposition. For this unit 3D Gaussian, a

surface of constant value of exp(-_) is a sphere of

radius 1. We shall say that its width, height, and

duration are all 1. Changing the scales of the Gaussian,

and putting it in motion, can be represented by linear

geometric transformations of space-time. Scaling is de-

scribed by a matrix

This is a shearing transformation, rather than a

rotation. In three dimensions, with horizontal and

vertical, speeds rx and ry, the motion shear matrix is

Fi01M = 1 . (4)

0

When motion precedes scaling, the complete trans-

formation T is the product of motion and scaling

transformations M and S,

S = s_ (2) 0 s, /

[o J0 s, After transformation by the matrix T, the unit Gaus-

where sx, se, and s, describe the new width, height, and sian may be written

duration, exp(- 7rx'C ix) (6)
While some analyses of motion sensing have made an where

analogy between orientation in space and velocity in C = TT'. (7)

space time (Adelson & Bergen, 1985; Burr et al., 1986), Transformation of space time by the matrix T corre-
this is not strictly correct. Motion corresponds to a
shearing transformation of space-time rather than a sponds to a transformation of the frequency domain by
rotation. To see this, consider just two dimensions the matrix (T')-1 and the corresponding Gaussian in the

(x and t) and imagine a stationary signal f(x, t). If this frequency domain is

signal is placed in motion at speed r, it may be written ITlexp(-_u'C'u) (8)

asf(x - rt, t). This corresponds to a transformation of where u = [u, v, w] is the 3D frequency coordinate.

the coordinate vector [x, t]' to M[x, t]' where This general formula includes the simple cases in

[10 lr ] which an expansion in space-time results in a contrac-M = . (3) tion by an equal factor in the frequency domain and in

which a rotation in space-time results in an equal ro-
tation in frequency. This is illustrated in Fig. 4 in which

*Since the contours in Fig. 4 were produced by linear transformations we picture ellipses corresponding to a particular set of
of a circle, they must all be ellipses. Thus, even though motion is

scales and speeds, as well as the corresponding ellipses
represented by a shear, for the special case of a Gaussian this is

equivalent to a particular magnification and rotation. It sometimes in the frequency domain. All ellipses represent exp(-_)
proves convenient to know what this magnification and rotation contours of the corresponding Gaussians. For simplicity,

are, so we present them here for reference. In general, given a linear we show only two dimensions. Note that the space-time
transformation T, a circle is transformed into an ellipsoid with and frequency ellipses are always orthogonal. From (A)
principal axes equal to the eigenvectors of C = TT', with lengths

equal to the square roots of the eigenvalues. This transformation to (B), the duration is shorter and the speed is
is equivalent to a magnification by the diagonal matrix of lengths, greater. This yields a frequency ellipse that is broader in
followed by a rotation to the direction of the first eigenvector, temporal frequency and more steeply inclined.*
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Note that the Gaussian and its modulation may be

considered separately and that the stimulus bandshape,

as distinct from its location, is determined entirely by the

3D Gaussian. This family of generalized Gabors is

attractive in part because it can be easily expanded or

contracted in each of the three dimensions and may also

have its major axis oriented along an arbitrary direction.
As noted above, certain directions have theoretical

interpretations of particular interest. The translations, of

course, serve to center the ellipsoid on a particular three

dimensional spatiotemporal frequency.

Finally, using the notation developed above, we can

write the luminance distribution for our generalized
Gabor stimulus as:

L(x) =/S [1 + c (x)] (9a)

c (x) = m exp[-_x'C Ix] cos[2_f'x] (9b)

where /S is the mean luminance, c(x) is the contrast

waveform, and m is the peak contrast.

CONTRAST ENERGY

The contrast energies of our transformed Gaussian

stimuli are easily computed. We first note that, by

Parseval's Theorem, the energy of a signal is equal to the
energy of its Fourier transform. The transforms of our

stimuli are in every case a pair of transformed Gaussians,

displaced to the two loci of the 3D sinusoid. Clearly the

energy in the pair of Gaussians does not depend upon

their locations (provided they do not overlap), and hence

the energy does not depend upon the spatiotemporal

frequency of our stimulus, only upon the aperture.

Next we note that the energy of a unit Gaussian of

scale a in one dimension is a/_/2. Each of our trans-
formed Gaussians, we have seen, is a unit Gaussian

subjected to scaling and shearing. The shearing does not
affect the energy (again, assuming no overlap) so we can

ignore it. The total energy is then the product of the

three energies of the three separable Gaussians, with

scales sx, Sy and s,, x 2 to account for the two Gaussians,
and multiplied by m2/4 because the amplitude of each

3D Gaussian, before squaring, is m/2

E = 2 5/2m2(sxsys,). (10)

Note that this quantity depends only on the spatial

and temporal scales, and not on the velocity of the

grating or the aperture, or upon the carrier frequency.
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FIGURE 5. Contrast energy thresholds for various spatial frequencies.

framebuffer controller. In these experiments, frame rate
was always 30 Hz. This value was chosen as the best

compromise between excessive storage and computation
requirements for each movie and the potential for alias-

ing. Consideration of the spatial and temporal par-

ameters of our stimuli shows that none were significantly

aliased at this frame rate. Display mean luminance was

40 cd/m 2. Stimuli were presented on a dark background

in an otherwise darkened room. Viewing was monocular

with the dominant eye from a distance of 48.4cm,

yielding an image size of 8 x 8 deg. The non-dominant
eye viewed the display through a diffuser. Three observ-

ers (one naive) took part. All observers wore their

normal spectacle correction.
Data were collected with a two-alternative forced-

choice QUEST staircase procedure (Watson & Pelli,

1983), and thresholds were subsequently estimated as the

82% correct point of a fitted Weibull function (Watson,

1979). On each trial, the stimulus moved randomly either

left or right, and the observer attempted to identify this

direction. When both grating and aperture drifted, the

observer identified the grating direction. Feedback was
provided.

In these experiments the carrier frequency was always

horizontal (fy = 0), and carrier speed was of necessity
horizontal. Our search strategy was to optimize the

remaining parameters in the following order: spatial

frequency (f_), carrier speed (.£/f_) duration (s,), width

and height (s_ and sy), and aperture speed (ax and ay).

METHODS

Stimuli were computed in advance as digital

movies with 8-bit precision. Movie resolution was

256 × 256 pixels × 16 frames. Each movie was stored in

the framebuffer memory ofa PIXAR II image computer,
and could be presented at a selected frame rate at a

selected contrast. Contrast control and display lineariz-

ation were accomplished by means of look-up-tables just

prior to the 10-bit digital-to-analog converters of the

RESULTS

Spatial frequency

For the first series of measurements, which looked for

the optimal spatial frequency, it was necessary to make

initial guesses for the values of the other parameters. The

horizontal and vertical scales (sx and sy) were both set
equal to 2.66 cycles of the carrier, and the temporal scale

(st) was set to 4 frames (0.133 sec). The speeds were set



330 ANDREW B. WATSON and KATHLEEN TURANO

to result in a constant temporal frequency of 4 Hz. These

numbers were based loosely upon the optima obtained

by Watson et al. (1983).

Figure 5 shows the results for three observers. Results

are plotted as -log_0 of contrast energy, which is

proportional to the log_0 of efficiency under the assump-

tion of a flat noise spectrum. Efficiency declines

markedly below 2 and above 4 c/deg, and between these

points there is a rather flat optimum. Frequencies of 2,

3, and 4 c/deg are equally efficient within measurement

error, so we selected 3 c/deg as the optimum from which
the search would continue in another dimension.

The peak at approx. 3 c/deg differs from the value of

around 8 c/deg previously obtained for efficiency of

simple detection (Watson et al., 1983). This difference is
consistent with the common observation that the motion

pathway is preferentially sensitive to low spatial frequen-

cies (Kulikowski & Tolhurst, 1973; Tolhurst, 1973, 1975;

Watson & Robson, 1981; Watson, Thompson, Murphy

& Nachmias, 1980). Consistent with this view, Watson
et al. (1980) showed that direction discrimination
thresholds are somewhat above detection thresholds at

around 5 Hz.

Carrier speed

With spatial frequency fixed at 3 c/deg, and all other

parameters fixed at their initial values (see above), we

varied the carrier speed (fjf_). Results are shown for

three observers in Fig. 6.

Considering the average of the three observers, the

optimum occurs at a speed of 1.67 deg/sec. Values of

1.33 and 2.0 deg/sec are detected with an efficiency that

is not significantly different. The optimum corresponds

to a temporal frequency of 5 Hz, essentially the same as
the value of 4 Hz determined by Watson et al. (1983).

Duration

With spatial frequency and carrier speed fixed at their

optimal values, we next varied duration (s,). Results are

shown in Fig. 7.
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FIGURE 7. Contrast energy threshold as a function of duration (s,).

There is some variability among observers, particu-
larly at the longest and shortest durations, but the

average peaks at about 0.133sec. This rather brief

duration corresponds to a broad temporal frequency

spectrum (a scale of 7.5 Hz, or a half-amplitude, full

bandwidth of 2.5 octaves). This is in rough agreement

with estimates derived by Anderson and Burr (1985)

from temporal masking studies.

Width and height

In one set of measurements, pictured in Fig. 8, we

simultaneously varied width and height of the aperture

(sx and Sy) while all other parameters remained at their
current optima. The results show a very clear decline at

larger sizes, and a more modest decline at the smallest

sizes. The optimum of the average of the two observers

is at 0.44 deg. This corresponds to a spatial frequency
bandwidth of 1.1 octaves.

In additional measurements, we varied either width or

height, while the other dimension was fixed at the
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FIGURE 6. Contrast energy thresholds for various carrier speeds.
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FIGURE 8. Contrast energy thresholds as a function of the width and

height of a circularly symmetric Gaussian aperture.
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FIGURE 9. Contrast energy threshold as a function of the speed of

the Gaussian aperture. All points are for horizontal motion (a,.) except

for the single point labeled "crh (y)" which is for upward motion (at)

at 13.3 deg/sec.

optimum of 0.44 deg. These variations produced less

than 0.1 log unit change in threshold contrast energy.
This illustrates the complicating effects of probability

summation over space (see Discussion) and shows that

our estimates of receptive field size are only approxi-

mate. The approximate equivalence of width and height

optima also agrees with previous masking and sum-

mation data (Anderson & Burr, 1991; Anderson et al.,

1991).

Aperture speed

In our final experiment we varied the velocity of the

aperture, while the other parameters of the stimulus were

fixed at their optimal values. We used primarily horizon-

tal aperture motion (the same axis as the grating
motion), but in one case examined upward motion.

Figure 9 shows a broad optimum extending from

around - 6 to 6 deg/sec. The optimal velocity is approxi-

mately zero but could be either equal (1.67 deg/sec) or

opposite (- 1.67 deg/sec) to the grating speed. Consider-

ation of the spectra corresponding to these three con-

ditions may be edifying. As shown in Fig. 10, and as

discussed earlier, motion in space time results in a shear

(not a rotation) of space-time and a related shear in

frequency. In graphical terms, this means that variation

in the aperture speed will produce slight changes in the
orientation of the spectrum, but will not rotate it to the

orientation of the velocity line. It should be clear that

the degree of possible rotation is determined by the

aspect ratio in space and time: rotations are most easily

accomplished when the spectrum is narrow in temporal

frequency, and broad in spatial frequency. This is effec-

tively the opposite of what holds for the optimal spec-

trum. Another perspective on this limitation is that

variations of aperture speed do not alter the spatial

frequency spectrum. The bandwidth of this spatial spec-
trum, which is observed to be rather narrow, constrains

16
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FIGURE 10. Frequency spectra corresponding to aperture motion of
-1.67, 0, and 1.67 deg/sec. The oblique line from the origin corre-

sponds to the carrier speed of 1.67 deg/sec, and extends to the carrier

frequencies of 3 c/deg and 5 Hz. The aperture scales are 0.44 deg and

0.133 see. Lines are isoamplitude contours at exp(--Tr).

the rotations that can be achieved. To summarize, for

the optimal signal, spatial bandwidth is too narrow and

temporal bandwidth too broad to produce a spectral

receptive field that is tuned for "velocity".

The optimal motion stimulus

We summarize the outcome of our sequential optimiz-
ation of the stimulus parameters in Table 1. We have

labeled as approximate those parameters which exhib-

ited a broad optimum, or those that were not studied

extensively (such as ay). This optimal stimulus is ren-
dered as an x t image in Fig. 11, and as a 3D spectrum

in Fig. 12.

DISCUSSION

Spectral requirements for a "velocity-tuned" sensor

We noted previously that with the spatial and

temporal bandwidths we observed, it is impossible to

produce a sensor whose spectral receptive field is

"velocity-tuned", i.e. aligned with the velocity contour.

TABLE I. Parameters of optimal motion stimulus

Parameter Value Unit Notes

f, 3 c/deg

f, 0 c/deg Fixed

f 5 Hz 1.67 deg/sec

sx 0.44 deg approx.

Sy 0.44 deg approx.

s, 0.133 sec

a.,. 0 deg/sec approx.

ay 0 deg/sec approx.
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FIGURE 11. Space-time image of the optimal motion stimulus.

Here we generalize this observation somewhat. Consider
a spectral receptive field following the generalized Gabor
model, centered at (fx,f)and with linear spatial and
temporal bandwidths bx and b, (Fig. 13). To be aligned
with the velocity contour (diagonal line in Fig. 13), the
bandwidths must be in the same ratio as the frequencies:

bt f
- (11)

bx fx"

o

b.

/

/
.._ bx _ /
_q y

bt

Spatial frequency

FIGURE 13. Bandwidth constraints for a spectral receptive field
aligned with the velocity contour.

Rearranging terms, we see that the ratio of bandwidth
to center frequency must be equal for both spatial and
temporal domains

bt bx
- (12)

f_ L"

15
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/

5
/

fx 10

15

FIGURE 12. Three-dimensional amplitude spectrum of the optimal motion stimulus.
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FIGURE 14. Contrast energy thresholds for direction discrimination

derived from the data of Anderson and Burr (1991). The three upper

panels are for observer SA, the lower three for AP. Solid lines show

results for varying height, dashed lines for varying width. From left to

right the spatial frequencies were 0.1, 1, and 10 c/deg.
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Another way of saying this is that spatial and tem-

poral log bandwidths must be equal. This requirement is

violated by typical psychophysical and physiological

measurements which indicate spatial log bandwidths

much narrower than temporal [an exception are the

estimates of Anderson and Burr (1985) at low spatial

frequencies]. Finally we should note that since our

methods reveal only the most efficient detector, it is
possible that less efficient velocity-tuned detectors exist.

Comparison with results of Anderson and Burr (1991)

It is of interest to compare our results with those of

Anderson and Burr (1991), who examined the effect on

direction discrimination thresholds of the height and

width of a Gaussian-windowed drifting grating. In most

respects our stimuli and experimental methods closely

resemble theirs, although our selection of stimulus par-

ameters and data analyses are different.

*There is some question how to interpret their absolute measures, since

there is vertical displacement of about 0.4 log unit width and height

in several graphs, despite the fact that they share a condition (l.5

cycles in both width and height).
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FIGURE 15. Comparison of receptive field size estimates from various

methods. The points are efficiency optima derived from Fig. 14. The

curve shows estimates obtained by Anderson and Burr from the same

data from the fit of a model. The vertical line represents the range of

optima observed here (Fig. 8).

Anderson and Bur collected thresholds for both detec-

tion and direction discrimination. We have extracted all

of the discrimination data from their Figs 1_4 by

scanning, digitally measuring, and appropriately scaling

the figure images. As a test of the accuracy of our data

extraction methods, we have computed the SD of our

estimates of the x-coordinates from the 12 graphs (all 12

share the uppermost 11 x-coordinates). This value,

averaged over 11 coordinates, was 0.005 logj0 units. The

contrast thresholds were converted to contrast energy

thresholds by equation (10). Results are plotted in
Fig, 14.

The peak values attained in their data are around

4.6 log units. This is about 0.5 log unit below our best

values. Several factors may contribute to this dis-

crepancy. First, their frequencies of 1 and 10 c/deg lie on

either side of our optimum, and from our data we expect

as much as 0.4 log unit decline from this effect alone (see

Fig. 3). Second, they used a duration (st) of 0.827 sec,

rather far from our optimum of 0.133 (Fig. 7), and we

expect a further decline of perhaps 0.25 log units from
this source. Third, they used a mean luminance of

400 cd/m 2, 1 log unit above ours. Since we are some-

where between DeVrie_Rose and Weber regimes

(van Nes & Bouman, 1967), we expect less than 0.5 log

unit enhancement of their sensitivity relative to ours

(DeVries Rose implies a square-root effect of luminance

on contrast thresholds, or a proportionality between

luminance and contrast energy thresholds). The sum of

these factors predicts that their optimum should be

between 0.65 and 0.15 log units below ours, consistent
with what is observed.*

In every case, the curve rises from the lowest sizes,
reaching a rather broad optimum somewhere between

0.5 and 2.5 cycles. In Fig. 15 we bring together several

possible estimates of receptive field width and height.

The model estimates derived by Anderson and Burr
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FIGURE 16. Spatial frequency response of left and rightward recep-

tive fields as estimated by Anderson and Burr (1991). The peak spatial

frequency is 0.1 c/deg.

from the data in Fig. 14 are shown by the solid curve.

The efficiency optima we extracted from Fig. 14 are

shown as points. The vertical line represents the range of

possible efficiency optima obtained from the present
experiments (Fig. 8). While our results (vertical line) are

broadly consistent with the optima from Fig. 14 (points),

they are clearly higher than the model estimates of

Anderson and Burr (curve). This must be considered
a substantial unresolved difference between our two

studies. For emphasis, in Fig. 16 we plot the spatial

frequency tuning functions estimated by Anderson and

Burr at 0.1 c/deg for left and rightward tuned receptive
fields. Since direction-selectivity derives from differential

excitation of these two fields, these very broad tunings
would presumably lead to a diminished sensitivity, rela-

tive to more narrowly tuned sensors.

We also note that in the optima that we derive from

their data there is little systematic variation in the

location of the optima with spatial frequency. This

contrasts with their finding, derived by way of a detec-

tion model, that receptive fields are nearly five times as

broad (in cycles) at 10 than at 0.1 c/deg. One possible
explanation for this result is as follows. Anderson and

Burr's estimates of receptive field dimensions were de-

rived from a model incorporating sensors selective for

spatial frequency, orientation and direction. The center

frequencies of the sensors were -2, -1, 0, 1, and 2

octaves relative to the test frequency. All sensors were

assumed to be equally sensitive. When the stimulus is

narrowed or shortened, its spatial frequency spectrum

broadens, and sensors at frequencies above and below

the test frequency are increasingly stimulated. If the test

frequency is on a negative-sloping segment of the con-

trast sensitivity function, then the distribution of activity
will be biased toward lower frequencies. If lower fre-

quencies are detected by larger receptive fields, as is

typically assumed, then there will be a bias toward

estimation of larger receptive field dimensions. Since

their model does not incorporate the variation in sensi-

tivity with spatial frequency, it will not show this effect.
The net result is that their model will overestimate

receptive field dimensions at high spatial frequencies.

Subthreshold summation

Subthreshold summation has been frequently used to

probe the structure of the early human visual system

(Barlow, 1958; Graham & Margaria, 1935; Graham

& Nachmias, 1971; Kulikowski & King-Smith, 1973;

Watson, 1982; Watson et al., 1980). It relies upon the
differing degrees of additivity that are associated with

different types of summating mechanisms. Within a

linear mechanism, linear summation is expected, while
between independent detectors, probability summation

is expected. In a typical experiment additivity is assessed

between two signals. If summation is linear, then the

signals are presumed to be detected by a mechanism that

linearly sums them both. Experiments which increase the

spatial or temporal extent of a signal, to discover the
transition between linear and less-than-linear sum-

mation, are an extension of this idea. Our experiment is
perhaps the ultimate extension of this idea. Variation of

the shape of the stimulus (or its spectrum) manipulates
both the collection of summed components and their

relative amplitudes.

However, our technique also inherits the dis-

advantages of subthreshold summation. Because we are

attempting to measure the receptive field of one sensor

that is possibly surrounded in space, spatial frequency,

orientation, and temporal frequency by other sensors,

the optimum is not as sharp as would be the case if this
were indeed the only sensor.

Comparison with results of Watson, Barlow and Robson
(1983)

In their original search for "what does the eye see

best", Watson et al. (1983) used stimuli and methods

very similar to those used here, except that a simple
detection rather than a direction identification task was

used. Their optimum occurred at 8 c/deg, 4 Hz, 2.66

cycles, and 0.142 sec, compared to our values of 3 c/deg,
5 Hz, 1.32 cycles, and 0.133 sec. These numbers are all

quite similar, except perhaps those for spatial frequency
and bandwidth. We have mentioned above that the

different frequency optima may reflect a genuine differ-

ence between the motion system and a more general

detection system. The difference in spatial scale must be

tempered by our observation that this parameter shows

a particularly flat optimum. Their best threshold was
-6.03 log deg 2 sec. This improvement over our best

value (about 5.0 log deg 2sec) may be attributed in part
to an increased mean luminance (340cd/m 2) which

might yield 0.5 log unit (see discussion above regarding
data of Anderson & Burr), and binocular viewing, which

might yield another 0.3 log unit (Arditi, 1986; Campbell

& Green, 1965).

Comparison with cortical receptive fields

The motion filter model (Watson & Ahumada, 1983,

1985) was inspired in part by direction-selective simple

cells in the visual cortex of cat and monkey (Campbell,

Cleland, Cooper & Enroth-Cugell, 1968; De Valois,

Yund & Hepler, 1982b). More recent measurements
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have shown that the linear receptive fields of these simple

cells are described well by the motion filter model

(Hamilton et al., 1989; McLean & Palmer, 1994;

McLean, Raab & Palmer, 1994), though their detailed
behavior may require additional, non-linear mechanisms

(Albrecht & Geisler, 1991 ; Heeger, 1992; Reid, Soodak
& Shapley, 1991).

The particular form of motion filter proposed by

Watson and Ahumada (1983) was of a type they de-

scribed as a "quadrature model", created by combining
a pair of separable spatiotemporal filters in quadrature

phase. Such a filter, though inseparable in space-time

and frequency, is separable in frequency when only

positive temporal frequencies are considered ("positive-

separable"). This in turn means that the spectral recep-

tive field would be aligned with the Cartesian axes, which

likewise means that the aperture would be stationary.

Hamilton et al., examining both amplitude and phase

data, find general agreement with the quadrature model,

and in particular with spatiotemporal separability of the

spectral receptive field in one quadrant (Hamilton et al.,
1989).

McLean, Raab, and Palmer (1994) have made both

space-time (McLean et al., 1994) and frequency domain
(McLean & Palmer, 1994) measurements of the receptive

fields of simple cells in cat visual cortex. In agreement

with Hamilton et al., they found that 29 out of 30

cells showed a spectral receptive field aligned with

the Cartesian axes, rather than aligned with the velocity
axis.

Our optimal stimulus has a frequency bandwidth of

1.1 octaves and an orientation bandwidth of 41 deg.

These agree closely with comparable median estimates

for primate cortical cells of 1.4 octaves and 42 deg,

respectively (De Valois et al., 1982a, b), though it must
be borne in mind that the distributions of these estimates

over the population of cells was very broad.

CONCLUSIONS

We measured contrast energy thresholds for a wide

range of generalized Gabor stimuli, varying in spatial

frequency, duration, height, width, carrier speed, and

aperture speed. The lowest contrast energy threshold

occurs at around 3c/deg and 5Hz, with a spatial
bandwidth of about 1.1 octaves, an orientation band-

width of about 41 deg, and a temporal bandwidth of

about 7 Hz (2.5 octaves). As an estimate of the under-

lying motion sensor, these values agree well with median

estimates from single cortical neurons, but disagree

with some other psychophysical estimates, particularly
in regard to spatial bandwidth (Anderson & Burr,

1991).

We find no evidence for spectral receptive fields

aligned with the velocity axis. Furthermore we point out

that such a receptive field is generally incompatible with

a commonplace observation: that spatial bandwidths are

typically much narrower, in octaves, than temporal
bandwidths.
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